Field-induced glassiness in disordered cluster antiferromagnets

Mateus Schmidt, Fábio Mallmann Zimmer
Universidade Federal de Santa Maria

Cluster magnets are systems in which the intrinsic magnetic moments are assembled in small groups that weakly interact with their environment. In these systems, a richness of physical properties is observed, which is ruled mostly by the cluster structure and intracluster interactions. In the present work, we present a study of cluster antiferromagnets in which a disordered coupling between clusters is considered. We adopt the Sherrington-Kirkpatrick [1] type of coupling, which was evaluated within a replica-symmetry approach. Our model considers triangular and square plaquette clusters of Ising spins. We evaluate the temperature \(T \) versus longitudinal external magnetic field \(H \) phase diagrams - by computing the de Almeida-Thouless stability line - and the magnetocaloric properties of these systems. As a result, we found field-induced freezing of magnetic cluster moments for the square plaquette. Moreover, when geometrical frustration is present, a field-induced revival of cluster glassiness is observed. We also notice that the magnetocaloric properties can be used to identify whether a weak disorder is manifested in cluster antiferromagnets. In particular, we found that the convergence of the adiabatic curves in the \(T - H \) plane towards the critical fields when \(T \to 0 \), which is observed in the clean limit, is smeared out by a weak disorder. More important, this effect can be identified even above the freezing temperature. Our results reinforce that weakly disordered cluster antiferromagnets are prototypes for field-induced glassiness, as suggested in a recent investigation of a van Hemmen cluster model [2]. We also propose that the present theoretical framework can help to identify disorder effects in cluster antiferromagnets.
