Ultra-high quality factor Al_2O_3 coated silica microspheres

Marvyn Inga, José Maria Silva Filho, Louise Trivizol, Yovanny A. V. Espinel, Lais Fujii dos Santos, Francisco C. Marques, Thiago P. Mayer Alegre, Gustavo Wiederhecker

Applied Physics Department, "Gleb Wataghin" Physics Institute, University of Campinas - UNICAMP, 13083-859 Campinas, SP, Brazil

Spherical silica microcavities are among the highest optical quality factor microresonators ever fabricated [1]. Such characteristic have been explored to demonstrate a plethora of low-power nonlinear optical effects in these devices, such as Raman lasing [2] and Kerr frequency combs [3], as well as single-molecule resolution optical sensors [4]. Such high quality factors, up to 10^9 result from the thermal fusion process often employed in their fabrication, which ensures atomic-level surfaces roughness. Some of these interesting nonlinear effects however, such as Kerr frequency combs, requires strict momentum conservation (phase-matching) to be full filled. The phase-matching condition requires control of the group velocity dispersion (GVD) but, due to their single geometric degree of freedom - the diameter - microspheres do not allow precise dispersion engineering. Recently, several theoretical papers have investigated the microsphere GVD dependence on the distinct coating materials [5].

Here we experimentally demonstrate that ~ 250 μm optical microspheres, fabricated from a commercial fiber-fusion splicer and coated with alumina (Al_2O_3), can sustain optical quality factors up to 10^7. Atomic force microscopy (AFM) confirms sub - 5 nm RMS roughness for the atomic layer deposition (ALD) coating with thickness ranging from 50 nm to 130 nm. Our experimental data is complemented with numerical simulations showing that the Al_2O_3 layer thickness, ranging from 50 nm to 150 nm, allows for precise tuning of the zero GVD wavelength.

We envision that such a high-Q resonator coated with alumina could be readily used to improve the spectral range of Kerr frequency combs through dispersion engineering.

We acknowledge FAPESP, CNPQ and CAPES for financial support.

References:

