New DyIII and TbIII complexes with tripodal ligands
$2,2'\-\[(2$-pyridinylmethyl)imino\]di(methylene)\]-bis(4-methyl-phenol). Syntheses, structures and luminescence properties

Jorge Manzur
Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile

Ricardo C. Santana
Instituto de Física, Universidade Federal de Goiás, 74690-900, Goiânia (GO), Brazil.

Andrés Vega
Departamento de Ciencias Químicas, Universidad Andrés Bello, Santiago, Chile

Evgenia Spodine
Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile. Centro para el Desarrollo de Nanociencias y Nanotecnología, CEDENNA, Santiago, Chile.

New rare earth complexes, $[\text{Tb}_2\text{L}_2(\text{NO}_3)_2(\text{H}_2\text{O})_2]\cdot\text{H}_2\text{O}$ (I), $[\text{Dy}_2\text{L}_2(\text{NO}_3)_2(\text{MeOH})_2]$ (II) and $[\text{Tb}_2\text{L}_2(\text{NO}_3)_2(\text{DMF})_2].0.5\text{DMF}.0.5(\text{C}_2\text{H}_5)_2\text{O}$ (III), $\text{L} = 2,2'-\[(2$-pyridinylmethyl)-imino\]-di(methylene)\]-bis(4-methyl-phenol), were synthesized by a Mannich type reaction with 2-(methylamino)-pyridine and p-cresol. The single crystal X-ray diffraction data show that in each complex (I) to (III) the lanthanide ions are eight coordinated with the coordination sphere completed by one pyridyl and one amine nitrogen atoms, three phenoxo oxygens, one solvate oxygen (water for (I), methanol for (II) and N,N’-dimethylformamide for (III)) and a bidentate nitrate. The optical properties of the complexes were studied by diffuse reflectance, luminescence and decay curve measurements. The studied compounds exhibit slight different luminescence properties under excitation at ligand energy levels, indicating that varying the solvent the characteristic emissions of TbIII and DyIII ions are not substantially affected. The luminescence intensity ratios Y/B (DyIII) and G/B (TbIII) were calculated and are close to 1.3 and 1.2 respectively, indicating a more covalent character of the bonding between the lanthanide ions and surrounding ligands. The decay curves of TbIII samples exhibit a double exponential behavior, with a long lifetime up to 1.11 ms, whereas a single exponential behavior was observed for DyIII samples, with very small lifetimes ∼0.011 ms. These results are consistent with the relatively small energy gap between the $^4\text{F}_{9/2}$ and $^4\text{F}_{1/2}$ DyIII levels, $\Delta E \approx 7600 \text{ cm}^{-1}$, in comparison with the large energy gaps between $^5\text{D}_4$ and $^5\text{F}_0$ energy states of TbIII, $\Delta E \approx 14820 \text{ cm}^{-1}$, showing that the values of lifetimes increase with increasing of ΔE values, i.e., LnIII ions with smaller ΔE quench the luminescence more efficiently than those LnIII ions with large ΔE. The CIE coordinates were calculated for all complexes from their emission spectra in order to find out the color emission characteristics of the reported complexes. The results indicate that the TbIII and DyIII compounds could be used in solid state-lighting.

Acknowledgements: FONDECYT (1160106) in Chile and CNPq and FAPEG (23187-07/2016) in Brazil.