Dynamical phase transitions in two-dimensional Fermi liquids with quadrupolar interactions

Rui Aquino, Daniel G. Barci

Departamento de Física Teórica - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013, Rio de Janeiro, RJ, Brazil.

Quantum nematic phases of Fermi liquids have been observed in several highly correlated systems, such as high T_c superconductors, heavy fermions and quantum Hall systemsa. The isotropic-nematic quantum phase transition can be understood as a Fermi surface instability, driven by attractive quadrupolar interactions. Using bosonization, the non-Fermi liquid character of this transition has been explicitly shownb.

In this work, we focus on the dynamics of the isotropic phase when the isotropic-nematic transition is approached. For this purpose, we study collective excitations of a two-dimensional Fermi surface considering density-density, as well as quadrupolar interactions.

Using a semiclassical approximation in the bosonized theory, we write an evolution equation for Fermi surface fluctuations, analog to the Landau Fermi liquid formalismc. By expanding the Fermi surface deformations in an angular momentum basis, the system is reduced to a set of infinitely coupled harmonic oscillators. Each oscillator describes a Fermi surface deformation mode with a specific symmetry.

Focusing on the isotropic and the quadrupolar modes, we integrate out all other higher angular momentum components to compute the exact Green’s functions. To do this, we use a “decimation” techniqued. Truncating the system to n modes, we are able to compute a recurrence relation in which the nth-order Green’s function is written in terms of the $(n-1)$th-order one. Then, by carefully taking the limit $n \to \infty$, we compute the exact Green’s function. The normal frequencies are computed from $G^{-1}(\omega, \vec{q}) = 0$.

The dispersion relation of the normal modes depends on two Landau parameters, F_0 and F_2, that codify the density and the quadrupolar interactions respectively. We compute the dynamical fase diagram, where we display the normal modes in the (F_0, F_2) plane. We show that, in specific regions of the (F_0, F_2) plane, the dynamics of the Fermi surface fluctuations changes abruptly, signalling a dynamical phase transition.

We acknowledge financial support to CNPq and FAPERJ. R.A. is a FAPERJ IC fellow.

aE. Fradkin, S. Kivelson, et. al., Annual review of Condensed Matter Physics, 1, 153 (2010)
cDaniel G. Barci and D. Reyes, Phys. Rev. B87, 075147 (2013)
dH. L. Calvo and H. M. Pastawski, Braz. J. of Physics 36, 963 (2006)