Cell adhesion is an important process for cellular mechanics. The forces applied during cell adhesion can contain important information about cell status. However, theoretical and experimental studies ignore the correlation between cell adhesion and cell dynamics. For example: the correlation of the area of adhesion and the contraction of the cell, this is interesting for the study of muscle cells cardiac or cardiomyocytes. This research is limited to study the spontaneous periodic contraction, during the dynamic cells adhesion process. The possible application of this study is differentiate phenotypes or disease states based in mechanical experimental data. The experimental technique used to obtain the data was traction force microscopy (TFM), this technique consists in tracking the traction produced by a cell adhered in a elastic surface of polyacrylamide gel (rigidity 9.6kPa). The traction field is calculated based on the motion of fluorescent particles embedded in surface of polyacrylamide gel. Mapping the cell (embryonic cardiomyocytes) adhesion area and calculating the traction field. Mapping the cell adhesion and mean traction, there is a specific distribution, typically characterized by two traction gradient regions corresponding to the focal adhesions of the cell. Embryonic Cardiomyocytes contract spontaneously, produce a periodic traction signal. To perform the analysis of the force field of the periodic signal, we used the wavelet transform to the possibility to obtain the frequency and time domain signal at various scales. The results show that the frequency of the both focal adhesion regions remain stable in time having a high correlation between them.