Localization problem in time periodical systems

Lucas de Paula Miranda
Universidade Federal do Ceará

Raimundo Nogueira da Costa Filho
Universidade Federal do Ceará

The δ-kicked rotor is a dynamic system that can present chaotic behavior depending on the intensity of the perturbation (kicked) applied on it. Cassati and Chirikov, reviewed by Izrailev, study the dynamical properties of the classical kicked rotor model, and its correspondent quantum system. They showed that the chaotic behavior of the classic model leads to a chaotic dynamical diffusion. It was formulated by Niels Bohr that the dynamics of a quantum system reproduce the dynamics of the equivalent classical system in the classical limit. Which means that if a classical system has a chaotic behavior the quantum correspondent is also chaotic. Cassati showed that the presence of classic chaos kicked rotor leads to a diffusion suppression of the wave function in the momentum space, on the quantum correspondent system. This diffusion suppression is known as dynamical localization, which is the analogous phenomenon of the Anderson localization for time periodic systems. Using the Floquet operator, and the split-step method, we numerically studied kicked rotor under a random variation of the kick intensity (noise). Considering that in nature nothing is truly random, we study the effects of long-range correlated random sequence affects the dynamical localization on the noised kick rotor.